
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 1 of 12

The Virtual World Framework: Implementing a Web Based Client Side

Simulator

ABSTRACT

The Virtual World Framework (VWF) is a browser-based collaborative simulation system designed with the goal of

creating content in a shared immersive space. For the Modeling & Simulation community, the VWF represents an

evolution of the traditional online learning model by allowing the integration of three dimensional environments

with other, more typical, content. Traditionally, offering learners an experience in such an environment required the

instructional designer to craft content in some external system, often requiring specialty plug-ins and equipment.

Many of these systems (i.e. Second Life, or OpenSim) require authors to learn new programming languages and

methods that are not typically taught to instructional designers. By leveraging the web as a platform, the VWF

makes it possible for a much wider range of authors to create immersive environments. Additionally, the VWF

makes deploying this content to the end user much simpler than traditional immersive training packages. While

other simulation environments require desktop software installation or browser plugins, the VWF uses cutting edge

HTML5 capabilities to deliver its content to a variety of devices like desktops, tablets, and even phones, without any

effort by the end user. Users simply type in a URL as they would for any website, and they can access the

environment seamlessly. This has powerful benefits; including allowing immersive experiences on computers with

strict security that prohibits many traditional solutions. Finally, the VWF architecture makes hosting a server simple.

The VWF builds the simulated environment on each client, allowing the server to manage only synchronization.

This allows a server to host many users while utilizing little bandwidth and computational power. This paper will

describe the VWF architecture in detail and explain how the design decisions support the goal of wider access to

immersive simulation.

ABOUT THE AUTHORS

Rob Chadwick is a 3D programmer and artist who has been working in the 3D content field for more than ten

years. In that time, he has designed custom game engines, managed render farms, and written productivity tools. He

has taught entry level video and photo editing, and offered courses on advanced 3D animation. He has designed

simulations for the FBI and the US Navy using custom and off-the-shelf game software, and animated virtual spaces

for architecture and interior design companies. While primarily interested in rendering technologies, Rob has

worked for the last year with Advance Distributed Learning to foster interoperability of 3D assets. He holds a

Bachelors of Computer Science from Virginia Tech.

David Easter

Lockheed Martin

Cary, NC

david.easter@lmco.com

Robert Chadwick

Katmai, in support of the Advanced Distributed

Learning Initiative

Orlando, FL

robert.chadwick.ctr@adlnet.gov

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 2 of 12

David Easter has been creating graphics simulations on emerging platforms for more than 20 years. As a founding

member of Virtus Corporation, he co-authored the award-winning Virtus Walkthrough in an era before GPUs. Later,

as Chief Architect at 3Dsolve, he developed the engine underlying U. S. Army TRADOC's first Level 4 Interactive

Multimedia Instruction. More recently at Lockheed Martin, and working with the office of the Under Secretary of

Defense for Personnel and Readiness, he is bringing simulation training to the web as architect of the Virtual World

Framework.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 3 of 12

The Virtual World Framework: Implementing a Web Based Client Side

Simulator

INTRODUCTION

Virtual environments are increasingly used in the training of scientists, engineers and in STEM education (Satyandra

K. Gupta, 2008). These powerful tools allow users to collaboratively interact with simulated systems and

environments, increasing trainee engagement. However, those deploying a training experience within a virtual

environment face several technical challenges that make it difficult or impossible to reach the intended audience.

Primarily, these challenges consist of accessibility and network requirements (Freitas, 2008). The Virtual World

Framework (VWF) project sponsored by OSD, Training Readiness & Strategy, seeks to lower these barriers to entry

by creating a web browser based virtual environment platform that uses a novel network architecture to deliver

synchronized, collaborative, multi-user experiences with modest network requirements. This framework enables the

authoring of immersive experiences that are available instantly on any hardware that supports a modern web

browser - without special network configuration or additional client side software. This enables training to be

delivered to users in situations where traditional approaches would not be possible.

DESIGN PRINCIPLES

Open source

A primary goal of the VWF project is to provide an open source platform for future development in the field of

collaborative training applications. It is necessary that the tools, knowledge, and technologies created by the project

are available to outside developers both present and future. Code is available immediately as contributors modify it,

and outside users are free to use and modify the system as they see fit. The VWF project team regularly reviews

work by outside developers for suitability as an inclusion in the main VWF source.

Web Based

Traditional virtual environments can be difficult to install and run. Many require custom software to be installed on

the client machine, which presents an obstacle to deployment in many enterprises. Several other products are based

on Java, which has known security vulnerabilities and entails an unacceptable risk for military organizations.

Additionally, various products have version compatibility issues with some operating systems, or cannot be run by

mobile OS’s. The VWF seeks to build a virtual environment and application architecture that will run on any

David Easter

Lockheed Martin

Cary, NC

david.easter@lmco.com

Robert Chadwick

Katmai, in support of the Advanced Distributed

Learning Initiative

Orlando, FL

robert.chadwick.ctr@adlnet.gov

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 4 of 12

hardware configuration and on any operating system, including mobile devices. The system should not require any

software to be installed by the client, minimizing barriers to deployment. The VWF is authored as an HTML5

application, and uses several emerging standards supported by modern web browsers.

Client Side Execution

In order to allow the VWF to scale efficiently, the simulations are not computed by a central server. While a server

is necessary to deliver content and synchronize the client state, the server does not actively participate in the

simulation. This allows a single server to host many applications and serve hundreds of users simultaneously.

Additionally, each client is able to present the user with an optimal experience for their device and platform.

Low Bandwidth

The VWF must continue to function in low bandwidth environments. This goal is achieved through a unique

approach to simulation synchronization called “Replicated Computation.” Each client carries out the simulation

independently, but is synchronized by careful management within the VWF Kernel. Network messages need only be

moved between clients when an outside event injects input into the simulation. In this case, the input event is sent

out to a server which delivers it to all participating clients. Each client then independently computes the identical

application state based on the input, thus maintaining state synchronization with minimal bandwidth requirements.

SYSTEM ARCHITECTURE

In order to fulfill the requirement that the VWF system be open source and web based, it is designed as a client side

JavaScript library, and utilizes the capabilities of HTML5 browsers. These capabilities allow the VWF to provide

rich graphics and networking functions without relying on any proprietary browser plug-in software. Additionally,

the VWF contains a small server component consisting of a static file server and a message bus component called

the Reflector. These components work together to create a platform that allows applications to be synchronized

across multiple clients.

The VWF design implements a Model-View-Controller architecture, with the client side and Reflector components

working together to create a distributed model. While this model is actually composed of complex client/server

interactions, it is presented to the client side code as a single entity, allowing for network synchronization that is

invisible to the application programmer. This makes it possible for an application developer to focus on the business

logic within the application, and offload all thoughts about networking to the framework. The internal design of each

component is discussed below.

Server Architecture

File Server

This server side component is responsible for two tasks: passing messages between clients, and serving static HTML

content. While it would be technically possible to separate the two functions into individual applications or even

onto different servers, the current implementation prefers the simplicity of implementing both components within

single server side application.

The HTML server component delivers the content required by the simulation to the client application, and also

sends the client side application itself to a user who browses to a specific URL. This content includes all the scripts

necessary to execute the application, images, sounds, 3D models, textures and other asset files. The server parses the

Interservice/Industry Training,

2013 Paper No. 13057 Page 5 of 12

incoming URL, and determines if that URL references a VWF application.

bootstrap file. Otherwise, the request is treated

client.

Applications and Instances

A VWF Application is a program hosted on the VWF file server that uses the VWF architecture to implement its

business logic. By implementing the application within the VWF, that application is

multiple users, and thus becomes collaborative in nature.

server only for synchronization, the server is able to host ma

application multiple times (see Figure 1)

and is allocated its own pool of connections on the

When a web browser accesses the URL of a VWF

document which causes the client to bootstrap the VWF system. The client now issues requests to the server as

instructed by the VWF bootstrap file, fetching system components and building the client side applic

this process is complete, the client connects to the server via a WebSocket, and is then instructed to make a request

for the initial application state. This state is parsed and loaded into the client side VWF application, which begins

executing the simulation.

Reflector

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

incoming URL, and determines if that URL references a VWF application. If so, the server serves the VWF

bootstrap file. Otherwise, the request is treated as a request for a static file which, if found on the disk

A VWF Application is a program hosted on the VWF file server that uses the VWF architecture to implement its

business logic. By implementing the application within the VWF, that application is able to

collaborative in nature. Because applications execute on the client,

for synchronization, the server is able to host many applications simultaneously, even running the same

(see Figure 1). Each executing copy of an application is called an “Application Instance

own pool of connections on the Reflector.

When a web browser accesses the URL of a VWF application, it fetches and returns to the client an HTML

document which causes the client to bootstrap the VWF system. The client now issues requests to the server as

instructed by the VWF bootstrap file, fetching system components and building the client side applic

this process is complete, the client connects to the server via a WebSocket, and is then instructed to make a request

for the initial application state. This state is parsed and loaded into the client side VWF application, which begins

Figure 1. Application Instances

cation Conference (I/ITSEC) 2013

If so, the server serves the VWF

which, if found on the disk, is sent to the

A VWF Application is a program hosted on the VWF file server that uses the VWF architecture to implement its

 share its state with

on the client, and use the

simultaneously, even running the same

Application Instance,”

it fetches and returns to the client an HTML

document which causes the client to bootstrap the VWF system. The client now issues requests to the server as

instructed by the VWF bootstrap file, fetching system components and building the client side application. When

this process is complete, the client connects to the server via a WebSocket, and is then instructed to make a request

for the initial application state. This state is parsed and loaded into the client side VWF application, which begins

Interservice/Industry Training,

2013 Paper No. 13057 Page 6 of 12

The final and most important server side responsibility of the VWF application is the synchronization of application

instances. This is accomplished by a portion of the

Reflector is to pass messages between clients, and organize those clients into groups

Instance. By sorting clients which have all loaded the same initial VWF application state into separate groups, and

only passing messages between group members, the

shares a common synchronized copy of an

collaborative document editor could be used simultaneously by many pairs of users, each pair editing their own

document.

As will be discussed in the Client Architecture section, the VWF main

carefully imposing rules on how applications may change their internal state. Certain types of state updates (i.e.

responding to user input) require a message to be “bounced” off the

the programmer, but allows other clients connected to the same Application Instance to be notified of the state

change. The Reflector receives these messages

(see Figure 2). These clients then respond to the event, thus updating their internal state in sync.

Client Architecture

Kernel

The core of the VWF client side application is called the Kernel. This component is the framework in which the

other modular components are hosted, and is responsible for routing messages betwe

Kernel also implements the replicated computation synchronization

Reflector server, and routing certain messages through the

decomposing VWF node definitions

commands to the system regarding the creation of

the bootstrap file.

Drivers

Drivers are a modular component of the VWF system which

simulation. Physics, graphics, audio, input, and scripting are each implemented as separate d

applications which do not require one of these features to avoid loading capabilities that are

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

server side responsibility of the VWF application is the synchronization of application

instances. This is accomplished by a portion of the server called the Reflector. The primary responsibility of the

to pass messages between clients, and organize those clients into groups based on the Application

. By sorting clients which have all loaded the same initial VWF application state into separate groups, and

only passing messages between group members, the Reflector is able to segment all users such that each group

shares a common synchronized copy of an application. Thus, a single VWF application which implements a

collaborative document editor could be used simultaneously by many pairs of users, each pair editing their own

As will be discussed in the Client Architecture section, the VWF maintains synchronization between clients by

carefully imposing rules on how applications may change their internal state. Certain types of state updates (i.e.

responding to user input) require a message to be “bounced” off the Reflector server. This bounce is

the programmer, but allows other clients connected to the same Application Instance to be notified of the state

these messages and sends them to each client connected to an application instance

These clients then respond to the event, thus updating their internal state in sync.

The core of the VWF client side application is called the Kernel. This component is the framework in which the

ted, and is responsible for routing messages between portions of the system. The

ernel also implements the replicated computation synchronization mechanism by forming a connection to the

, and routing certain messages through the Reflector. Additionally, the Kernel is responsible for

 into a series of properties, events, methods and behaviors, and issuing

commands to the system regarding the creation of these entities. The kernel is the first part of the syst

t of the VWF system which are used to provide capabilities or services to the

simulation. Physics, graphics, audio, input, and scripting are each implemented as separate d

do not require one of these features to avoid loading capabilities that are superfluous

Figure 2. Client Server Organization

cation Conference (I/ITSEC) 2013

server side responsibility of the VWF application is the synchronization of application

The primary responsibility of the

based on the Application

. By sorting clients which have all loaded the same initial VWF application state into separate groups, and

able to segment all users such that each group

application. Thus, a single VWF application which implements a

collaborative document editor could be used simultaneously by many pairs of users, each pair editing their own

tains synchronization between clients by

carefully imposing rules on how applications may change their internal state. Certain types of state updates (i.e.

. This bounce is transparent to

the programmer, but allows other clients connected to the same Application Instance to be notified of the state

and sends them to each client connected to an application instance

The core of the VWF client side application is called the Kernel. This component is the framework in which the

en portions of the system. The

by forming a connection to the

ernel is responsible for

into a series of properties, events, methods and behaviors, and issuing

these entities. The kernel is the first part of the system loaded by

are used to provide capabilities or services to the

simulation. Physics, graphics, audio, input, and scripting are each implemented as separate drivers, allowing

superfluous.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 7 of 12

The VWF API makes an important distinction between two types of drivers. Model drivers maintain the shared

application state, while View drivers provide a mechanism for that state to be presented to the clients in varying yet

consistent ways. While Model drivers can directly influence the simulation (i.e., computing object position with a

physics engine) and must be loaded by all participants in an Application Instance, View drivers are indepant of the

simulation, and my vary per client.

Drivers supply features to a VWF application by responding to messages sent from the Kernel. These messages take

the form of events that describe the changing state of the internal application data. For instance, the scripting driver

may execute an object script which calls for a sound to be played. The kernel would distribute a “play the sound file

at this URL” message to all the drivers, one of which would be programmed to respond to that particular message.

This driver (in this case, the sound driver) would respond to the message by loading and playing the sound file. In

this example, the driver would be implemented as a View driver, as the sound is user output, and cannot be used to

affect the internal state of the simulation.

As another example, consider a driver that supports physics. This driver may respond to a Kernel message that

approximately means ‘are these two object interpenetrating?’ The result of this Kernel message would be passed

back to the script driver, which then may make some branching decision based on the result. Because the state of the

simulation depends on the result of the drivers’ operation, the physics driver must be implemented as a Model

driver.

Nodes

Each entity, object, or actor within a VWF simulation is referred to as a node. Nodes are the basis for the business

logic of a simulation, and are carefully managed by the VWF to ensure synchronized internal state. The VWF

provides a rich set of structures to allow for the reuse of nodes, and for allowing nodes to interact with each other.

Nodes are arranged hierarchically, and roughly correspond to a scene graph from traditional computer graphics.

Nodes are defined by the properties they contain, the methods they may execute, and the definition of each of their

children.

The simulation actually occurs as events injected into the system cause nodes to change their internal state. These

inputs can be user inputs (as injected by a view driver) or systems inputs such as initialization notifications, or

“ticks.” ‘Tick” messages allow nodes to update their state over time. Additionally, models may generate events

based on the properties of the nodes in the simulation, such as triggering a “collision” event when a node changes its

position such that it penetrates another node’s physical representation. View drivers are notified by the kernel about

the changing properties of the simulation, and respond by presenting output to the user.

The VWF provides structures to make it easier to author the interrelations between nodes that create the simulation.

Application code may traverse the hierarchy of nodes that are taking part in the simulation, and modify the

properties therein. They may also search for specific other nodes, and bind code blocks to be triggered when some

event occurs on that node. They may even add or remove child nodes from themselves or from others. While all this

interaction occurs, the kernel is constantly communicating with the drivers, which may choose to inject events, or

may display the changing state. All of these features are contained within the VWF API, which safeguards the

simulation from drifting out of synchronization. When the kernel detects some operation that will cause replicated

computation to fail, and thus produce different results on each client, it forwards the event through the Reflector

before passing it on to the local nodes or drivers, thus ensuring that each client remains synced.

Components

Because one of the key goals of the VWF is to provide for reusable objects that can contain their own logic and

functions, nodes must be able to reuse functionality defined previously. The VWF supports this two ways.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 8 of 12

First, a node may be created within the system that extends and reuses some stored node definition. These stored

definitions are termed Components. Any node can become a Component by being saved out into the File Server in a

particular format. Future nodes can base their definition on the Component to extend, modify, or reuse its logic. This

mechanism allows a library of objects to be created that can be reused multiple times within an application, or

within multiple applications. Components can also extend other components, providing a rich inheritance structure

for building complex objects out of simple ones. Many of the basic object types within the system are implemented

as components, including scenes, camera, and particle systems.

Additionally, a node component can implement one or more “behaviors.” A behavior is simply a set of properties,

methods and events that are added to a node from an external file. Behaviors allow the simulation author to create

reusable functions that can be added to a node, regardless of that node’s inheritance chain.

Out of the box, the VWF provides a set of node components that implement a useful API for loading and

manipulating models in 3D space. These components include cameras, particle systems, physical objects, lights and

points. Through the inheritance model, the author can extend these components into more specific objects. For

instance, the simulation author may create a new component based on the particle system component. This new

component may modify the properties of the underlying particle system component to create a fire effect, and

expose new properties such as “FireTemperature” or “BurnLength.” Modifying these new properties could be

programmed to change the underlying particle system to create the effect of a bluer or yellower fire, or a higher

flame. Finally, the author could create several nodes based on their fire component to display a scene with multiple

fires of various sizes and colors.

SYSTEM REQUIREMENTS

The choice to base the VWF on HTML5 imposes some system requirements on the client machine. In order for a

browser to connect to the VWF server and execute a VWF simulation, it must support at minimum ECMAScript5,

and WebSockets. These capabilities are APIs implemented in most modern browsers and standardized by industry.

Any browser that supports these standards can participate in a VWF environment. This includes several current

mobile browsers.

Client Side Requirements

WebGL

WebGL is a JavaScript API that exposes the same functionality as OpenGL ES 2.0. It allows a browser to command

the system GPU from the script located within an HTML document, and can display the results of the GPU

operations within a section of that document. This allows a web browser to render three dimensional environments

or objects, or possibly to accelerate other types of calculations by leveraging the computation power of a GPU. The

default functionality of the VWF application is to use this technology to display the visual output of all simulations.

Currently, 72.6 percent of desktop browsers and 9.6 percent of mobile users can support WebGL. While the VWF is

able to execute in a mode that does not require WebGL, 3D immersive VWF applications do require this

technology.

ECMAScript 5

ECMAScript is a standardization of the common JavaScript web scripting language. All VWF functionality, both

within the VWF drivers and kernel, and within the simulation logic itself, is implemented in ECMAScript 5. In order

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 9 of 12

to provide the highest quality code, the VWF makes extensive use of the new features within version 5, including

getters, setters, and “strict mode.”

WebSockets

Because the VWF client side application must be able to receive commands from the remote server, it establishes a

WebSocket connection to the Reflector. A WebSocket is a full-duplex communication channel between a web

server and a client based on a TCP connection, via a protocol that was standardized by the IETF as RFC 6455 in

2011. WebSockets allow for high speed links between servers and clients that can remain open for the duration of a

users visit to a webpage. This differs from previous technologies, which would constantly create new temporary

connections to the server to poll for updates. WebSockets allow the VWF to receive simulation messages from the

Reflector server far faster and with less overhead than traditional HTTP techniques. Additionally, a WebSocket

connection can be established over port 80 simultaneously with the regular HTTP web traffic, making it possible to

form the connection even from behind most firewalls. Currently, more than 70% of browsers support this

requirement. (Deveria, WebGL - 3D Canvas graphics, 2013)

Server Side Requirements

Because of the low impact server design mentioned previously, the server component of the VWF has very few

requirements. The server software must implement the WebSocket protocol, and serve static HTML content, but

otherwise has no particular requirements. It should be noted that, as with any server software, the VWF server

component does require access through any firewalls on at least one port.

CHALLENGES AND CONSIDERATIONS

Platform Support

Our team has tested the VWF client application on a range of browsers and system configurations, and largely met

with success. The current implementation has been shown to function under Windows XP, Windows Vista,

Windows 7, Windows 8, OSX, Android, and Linux. Browser support varies over time as the underlying

specifications are still in flux, but generally, we find the system is well supported in Chrome, Firefox, Safari, and

Opera 15. Current versions of Internet Explorer may use some VWF applications, but compatibility is limited by the

lack of WebGL support. This significant impediment may be alleviated in the future, as there is evidence that

Internet Explorer 11 may contain WebGL support. We also expect to see increasing support in the mobile space, as

browser vendors continue to implement mobile versions of these cutting edge features.

Client Side ECMAscript Performance

One of the foremost concerns we faced when considering the feasibility of an HTML5 client side virtual

environment was the slow performance of JavaScript execution. It’s well understood that the raw performance of

code is generally less than that of native code platforms like C++. However, our claim that the web platform would

mature sufficiently to allow for complex applications in the browser was vindicated, and we no longer find client

side performance to be a bottle neck. While there are some applications where raw compute performance can still be

an issue (physics, collision), browser vendors continue to improve on JavaScript speed. Currently, there are several

projects to add faster computation the web platform, both by modifying the JavaScript standard, and by leveraging

GPU hardware. WebCL, an open project from the Kronos Group, may eventually enable web applications to harness

GPU and multi-core CPU parallel processing, enabling significant acceleration of applications such as advanced

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 10 of 12

physics. Additionally, the Mozilla Foundation is working to standardize a subset of the JavaScript language in a

system called ASM.js. ASM.js may make it possible to compile large JavaScript applications to an intermediate

code that, when paired with specific optimizations within browsers, can achieve near native performance. As these

and other innovations become available, VWF will evolve to take advantage of their performance benefits. It should

be noted that mobile devices have significantly lower performance profiles, and on these devices script performance

does hinder some VWF usability.

Real Time Synchronization

The VWF system guarantees state synchronization at the simulation time step interval, but not at real time intervals.

The Replicated Computation principle requires each client to execute the entire simulation at each time step, and

does not allow one client to ‘cheat’ to catch up to real time. Thus, if one client takes longer than one real second to

simulate one second of simulation time, that client simply cannot interact with a human user in real time. It should

be noted that this client will still always remain in sync relative to the simulation timestamp – it will simply display

the results of the simulation several seconds or minutes after the faster client. Obviously, this limits the ability of a

human to interact. In practice, simulations should be no more complex than can be simulated in real time by the

slowest client.

Difficulties Authoring Simulation Scripts

The “Replicated Computation” design, which allows the VWF to operate with very low bandwidth and very little

impact on the server, also introduces some complexities to the simulation logic author. Namely, state must neither

be stored in local JavaScript variables, nor can the scripts that drive the simulation directly accept input from an

outside source. This limits the ability of the system to integrate with outside services, as they may introduce

inconsistencies in the simulation. Imagine for instance the following scenario – a virtual lobby contains an artwork

that changes its pose based on the information in a data feed of DJIA stock market prices. When the simulation

updates, a request for the current DJIA data is sent to an outside server that returns the instantaneous value of the

index at that moment. Because the simulation update cycle may run many milliseconds behind on one vs. another,

but stock market data is keyed to real world clock time, the pose of the statue at a given second in simulation time

may differ. Should a bullet intersect with the artwork on one client, it would not be guaranteed to intersect it on the

other, leading to cascading failures of synchronization.

Currently, the VWF has few mechanisms to prevent this sort of problem. While we do provide some tools to avoid

this, such as a synchronized random number generator, there remain many possibilities for error. Best practices

documentation should help the programmer avoid asynchronization of client scripts, but these recommendations

cannot be enforced by the system. Simulation authors must be aware of the nature of replicated computation, and

avoid introducing dependencies on outside data into their simulations. We are actively researching ways to sanitize

client scripts to avoid these problems, but it remains very much an area for research.

FUTURE WORK

Driver Configuration

Use of a modular system of drivers allows the VWF to avoid imposing policy on its applications while allowing a

great deal of flexibility in the types of applications that can be developed. Currently, applications must provide a

configuration file that specifies the drivers necessary to support the components that the application uses. In most

cases, this is redundant since it would be possible for drivers to declare the components that they support. With a

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 11 of 12

registry collecting this data, the VWF could automatically locate and load drivers as needed. Configuration files

would still be available for custom configurations. Future work will investigate ways for drivers to be loaded and

unloaded during the execution of an application, and for driver state to be made current with the application without

requiring the developer to write detailed and error-prone synchronization algorithms.

View Components

VWF components allow applications to control the elements of a simulation while still having a measure of isolation

from the underlying implementation. A component that performs a characteristic animation, for example, can

successfully control an animation on any node, whether it is a keyframe animation imported from a Collada

document, or a custom rendering scripted directly on the node. Components may directly read and write properties,

invoke methods, and respond to events while the system ensures that the actions implied are correctly executed on

each client.

However, this only applies to the shared state--the "model" portion of the application. Parts that require access to the

user or to events that are not available to all clients--the "view" portion--are provided much less support. They must

connect to the VWF kernel through its view API, issue actions indirectly using object IDs, and carefully match

actions to results when return values are required. A direct corollary to model components that is adapted to the

special characteristics of the application's view side is needed. View components would allow functions that

manipulate the simulation but require access to the user to be developed more easily.

Additionally, many functions such as UI widgets or editing annotations operate exclusively on one client at a time

and don't affect the shared state. These functions would benefit from local model-like access to the same systems

that the global model and view components manipulate. Using the same API as model components, and in some

cases using model components directly, local components could create direct and private interactions with the user

while maintaining a degree of isolation from the underlying systems.

Modular Drivers

Many opportunities to extend VWF functionality forgo the isolation of the component API for the greater fidelity

allowed by directly manipulating a driver's internal data. Currently, this is only possible if all of the functions that

have access to this data are part of the same driver. To allow extensions such as specialized 3-D rendering

techniques to be easily supported, a lower-level extension system is needed. Such a system would provide a way for

cooperating drivers to conditionally share internal objects, such as specific nodes from a particular 3-D scene

manager. Allowing drivers to support only certain objects or certain types would let the system perform more of the

work and reduce the work required by the driver developer.

WebRTC Integration

A useful effect of the network model implemented by the VWF is the ability for users to collaborate on tasks. This

collaboration requires communication between users so that they may coordinate their efforts. Currently, the VWF

implements some example of text based chat clients, but we feel that face-to-face vocal communication is a richer

medium for interaction. The VWF recently added a video chat service based on emerging W3C standard called

WebRTC. WebRTC makes it possible to form peer-to-peer video and audio communication channels between users

within the same VWF application instance. We expect this will greatly increase the utility of the platform, without

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2013

2013 Paper No. 13057 Page 12 of 12

violating the central design principal of client side computation. Notably, this approach will not necessitate that the

video and audio content be routed through the VWF server, maintaining the scalability of the server side application.

Reflector Security

Currently, all clients connected to a VWF application instance are treated as peers. This creates some problems in

situations where it is desirable that some users be able to experience an application without the ability to modify the

internals of the simulation. Future work will include adding a security model to the Reflector, which will enforce

some policy requirements on incoming messages. Clients will have to claim ownership of a WebSocket connection,

and supply credentials that will be validated against a database. The form of that database is yet to be determined,

and it may be prudent to engineer the system in such a way that it is agnostic as to the method of credential

validation. Regardless, once validated, the system will apply the appropriate security to the client by filtering its

inputs to the simulation, and refusing to pass on messages that violate the policy. In this manor, a client will be

afforded the permission to edit the state of some objects but not others. While the client can always change the state

of their own internal simulation, the Reflector will prevent a malicious user from effecting the simulation on peer

machines.

CONCLUSION

Our work on the Virtual World Framework system has convinced us that building a virtual world training

application on the HTML5 platform is a viable way to lower the barriers to entry in the world of immersive

simulation. Much like the advent of webmail, bringing 3D environments into the browser makes them more

accessible and broadens the base of potential users. A web-based design makes it possible to deliver content on

multiple devices and platforms, while authoring only one set of client-side code. Additionally, moving to the web

platform makes it possible to integrate simulation with existing systems such as learning management systems,

massively online open courses, and content repositories. The practicality of designing a client-side simulation

environment introduces interesting challenges, necessitating tradeoffs in several areas. However, we believe our

work so far makes a compelling case that the benefits of this approach outweigh the cost.

REFERENCES

Chris Dede, J. C. (2005). “Students’ Motivation and Learning of Science in a Multi-User VirtualEnvironment”.

Deveria, A. (2013). WebGL - 3D Canvas graphics. Retrieved from Can I use...: http://caniuse.com/#feat=webgl

Deveria, A. (2013). Web Sockets. Retrieved from Can I use...: http://caniuse.com/#feat=websockets

Freitas, S. d. (2008). Serious Virtual Worlds A scoping study. Serious Graphics Institute.

Satyandra K. Gupta, D. K. (2008). Training in Virtual Environments. College Park, Maryland: CALCE EPSC Press

CECD/ETC Series.

Boyd, Richard. (2012) “The Virtual World Ecosystem Framework”

